Kinematics $C_{\text {C Dinamics of Linkages }}$

 Lecture 15: Mechanical Advantage
Power in a Systems

Mechanical System

Dat product of the farce vector F and the velocity V

$$
P=F . V=F_{x} V_{x}+F_{y} V_{y}
$$

Rotating Systems

Dat product of the tarque T and the angular velacity V

$$
P=T \omega
$$

Energy loss

$$
\text { losses }=P_{i n}-P_{o u t}
$$

Mechanical efficiency $\varepsilon=\frac{P_{\text {out }}}{P_{\text {in }}}$

Ideal Lase

$$
\begin{aligned}
& P_{\text {in }}=P_{\text {out }} \\
& P_{\text {in }}=T_{\text {in }} \omega_{\text {in }} \\
& P_{\text {out }}=T_{\text {out }} \omega_{\text {out }}
\end{aligned}
$$

$$
\begin{aligned}
& T_{\text {in }} \omega_{\text {in }}=T_{\text {out }} \omega_{\text {out }} \\
& \frac{T_{\text {out }}}{T_{\text {in }}}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}}
\end{aligned}
$$

MEE341 - Lecture 15: Mechanical Advantage
Slide 4 of $12 \sim$ LAU

Ideal Case

$$
\begin{array}{ll}
\text { Input Force } & F_{\text {in }} \\
\text { Dutput Force } & F_{\text {out }} \\
F_{\text {out }}=\frac{T_{\text {out }}}{r_{\text {out }}} & F_{\text {in }}=\frac{T_{\text {in }}}{r_{\text {in }}}
\end{array}
$$

Mechanical Advantage

$$
m_{A}=\frac{F_{\text {out }}}{F_{\text {in }}}=\frac{T_{\text {out }}}{T_{\text {in }}} \frac{r_{\text {in }}}{r_{\text {out }}}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}} \frac{r_{\text {in }}}{r_{\text {out }}}=\frac{V_{\text {in }}}{V_{\text {out }}}
$$

Mechanical Advantage - 4 Bar Linkage

From Velocity Analysis
$\omega_{4}=\frac{a \omega_{2}}{c} \frac{\sin \left(\theta_{2}-\theta_{3}\right)}{\sin \left(\theta_{4}-\theta_{3}\right)}$
But $\frac{\omega_{4}}{\omega_{2}}=\frac{O_{2} A \sin v}{O_{4} B \sin \mu}$

Which gives

$$
m_{A}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}} \frac{r_{\text {in }}}{r_{\text {out }}}=\frac{V_{\text {in }}}{V_{\text {out }}}=\frac{c \sin \mu}{a \sin v} \frac{r_{\text {in }}}{r_{\text {out }}}
$$

Example

Calculate the mechanical advantage for the powder compaction mechanism.
$A B=105 \mathrm{~mm}$ @ 44°
$B D=172 \mathrm{~mm}$
AC = 301 mm @ 44°

Example - Solutian

From the drawing (affset Slider-Crank):
$\theta_{2}=44^{0}$
$\Gamma_{\text {in }}=A C=301 \mathrm{~mm}$
$a=A B=105 \mathrm{~mm}$
$b=B D=172 \mathrm{~mm}$
$\mathrm{c}=27 \mathrm{~mm}$
$d=243 \mathrm{~mm}$

Example - Steps

Step 1: Pasition analysis > find θ_{3}
Step 2: Velocity analysis > find ω_{3} and \dot{a}
Step 3: Calculate $m_{A}=\frac{V_{\text {in }}}{V_{\text {out }}}$

Example - Step I

Find θ_{3} from previous position analysis
$a=105 \mathrm{~mm}, \mathrm{~b}=172 \mathrm{~mm}$,
$\mathrm{c}=27 \mathrm{~mm}, \mathrm{~d}=243 \mathrm{~mm}, \theta_{2}=44^{\circ}$

$$
\theta_{3}=\arcsin \left(-\frac{a \sin \theta_{2}-c}{b}\right)+\pi=\arcsin \left(-\frac{105 \sin 44^{\circ}-27}{172}\right)+\pi=164.5^{\circ}
$$

Example - Step 2

Find ω_{3} and \dot{a} from previous velocity analysis

$$
\begin{aligned}
& \omega_{3}=\frac{a \cos \theta_{2}}{b \cos \theta_{3}} \omega_{2}=-0.456 \omega_{2} \\
& \dot{d}=-a \omega_{2} \sin \theta_{2}+b \omega_{3} \sin \theta_{3}=-93.9 \omega_{2}
\end{aligned}
$$

Example - Step 3

Calculate the mechanical advantage
$a=105 \mathrm{~mm}, \mathrm{~b}=172 \mathrm{~mm}, \mathrm{c}=27 \mathrm{~mm}, \mathrm{~d}=243 \mathrm{~mm}, \theta_{2}=44 \mathrm{~d}$
$V_{\text {out }}=|\dot{d}|$
$V_{i n}=\left|\omega_{i n} r_{i n}\right|=\left|A C \omega_{2}\right|$
$m_{A}=\frac{V_{\text {in }}}{V_{\text {out }}}=\frac{301 \omega_{2}}{93.9 \omega_{2}}=3.2$

